Researchers evaluate a new slab ocean capability in the Energy Exascale Earth System Model (E3SM) version 2 by comparing its climate simulation to that of the full version of E3SM that uses a dynamic ocean model.
Accessing groundwater may become more difficult—and more expensive—as groundwater supplies become increasingly scarce and underground aquifer levels fall.
Researchers demonstrate an AI that can be taught to recognize cloud types by looking at millions of satellite images of clouds without requiring human input.
Researchers measured ice nucleating particles composition at the Southern Great Plains atmospheric observatory, enabling them to identify sources of particles that make them effective ice nucleators.
Using a refined Earth system model, researchers found that wetlands over North America will be significantly affected by climate change under future scenarios
Researchers use dataset combining observational data with advanced numerical simulations to investigate the characteristics, drivers, and trends of extreme heat events in the High Arctic over past four decades
Researchers develop framework that tracks the aerosol–cloud interactions along the trajectories of air parcels and embed framework into Weather Research Forecast model.
Study develops high-resolution land surface data for 2001 to 2020, including parameters of land use, vegetation, soil, and topography and demonstrated its use in k-scale simulation using the Energy Exascale Earth System Model.
Researchers show how satellite observations from the MODerate Resolution Imaging Spectroradiometer and CloudSat radar can be used to constrain the ACI radiative forcing that is linked to droplet collection in marine liquid clouds.
Researchers provide clear evidence to show that the fourfold Arctic Amplification over recent decades is an anomaly caused by dominant modes of natural variability.
Once thought to cover too little of the Earth’s surface to affect climate at larger scales, new work finds that city sprawl does add to global warming—over land, at least.
Researchers synthesize molecular-level laboratory experiments to develop comprehensive model representations of new particle formation and the chemical transformation of precursor gases.
Researchers show application of a causal model better identifies direct and indirect causal relations compared to correlation and random forest analyses performed over the same dataset.
Policy changes in power, energy, buildings, and more could help slow global temperature rise, according to a new report with co-authors from PNNL’s Joint Global Change Research Institute.