Atmospheric rivers are increasingly reaching the Arctic in winter, slowing sea ice recovery and accounting for a third of winter sea ice decline from 1979-2021.
A newly developed basin-scale river corridor model can quantify how riverbed microbes drive respiration and the generation of carbon dioxide in the Columbia River Basin.
With future warming, storms in the Western U.S. will be larger and produce more intense precipitation, particularly near the storm center, and increase flood risks.
In new work, PNNL researchers find that 10 gigatons of carbon dioxide may need to be pulled from Earth's atmosphere and oceans annually to limit global warming to 1.5 degrees. A diverse suite of carbon dioxide removal methods will be key.
Machine learning models help identify important environmental properties that influence how often extreme rain events occur with critical intensity and duration.
Hailong Wang is a non-federal co-lead for the Arctic Systems Interactions Collaboration Team that will explore the Arctic’s dynamic interconnected systems.
A scenario approach was used to explore the potential future role of hydropower around the globe considering the multisectoral dynamics of regional energy systems and basin-specific water resources.
Extreme winter storms are growing wetter and changing shape in the Western United States—such changes could compromise infrastructure designed to withstand only so much water.